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The paper discusses the sensitivity analysis for the shape optimization of a non linear magnetostatic 2D/3D system, evaluated both
by direct and adjoint approaches. The calculations are based on the material derivative and lie derivative concept of continuum
mechanics. The resulting sensitivity formula can be expressed as a volume integral or as a boundary integral along the interface
where shape modification occurs. A method for the calculation of the design velocity field and mesh updating scheme is developed
as well. The accuracy of the methodology is analysed on an inductor system, leading to the conclusion that the volume integration
technique should be preferred. All methods are freely available for further testing in the open source environment GetDP/Gmsh.
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I. INTRODUCTION

DESIGN sensitivity analysis is the computation of the
derivative of a functional and the state variables of a

system with respect to the design variables. To this end,
two main approaches have emerged: the discretized approach
and the continuum approach. The former consists in directly
deriving the discretized equations of the system, while the latter
first differentiates the continuous (partial differential) equations
governing the system, before being discretized [1], [2], [3], [4].
In the case of magnetostatic systems, the continuum approach
leads to a set of continuum sensitivity equations that can be
solved numerically using the same discretization scheme as for
the original problem. This approach is the most general, and
can be easily implemented in any existing finite element code
such as GetDP/Gmsh [5], [6]. In this paper we present both
the direct and the adjoint continuum sensitivity analysis for a
general nonlinear 2D and 3D magnetostatic system, taking into
account the potential discontinuity of the state variable across
bimaterial boundaries.

II. FORMULATION OF THE MAGNETOSTATIC PROBLEM

Let us consider a magnetostatic problem modeled thanks to
Ampère’s equation (1) in a bounded domain Ω = Ω1∪Ω2 with
boundary ∂Ω = Γ. Domains Ω1 and Ω2 are characterized by
their own reluctivity ν and separated by an interface boundary
γ undergoing shape modification as illustrated in Fig. 1. The
system is excited by permanent magnets with a magnetization
M and/or inductors with a current density J, which can be
located anywhere in the domain.

curl (ν curl A) = J + curl (M) in Ω, (1)
A = 0 on Γ. (2)

Looking for the magnetic vector potential in an appropriate
function space ZA and using test functions in the same space,
the classical weak formation reads

a
(
A, Ā

)
= l
(
Ā
)
, ∀Ā ∈ ZA, (3)
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Fig. 1. Considered domain for the shape optimization problem.

with a
(
A, Ā

)
:=

∫
Ω
ν curl A · curl Ā dΩ and l

(
Ā
)

:=∫
Ω

(J + curl (M)) · Ā dΩ.

III. DESIGN SENSITIVITY ANALYSIS

A. Material Derivative

Consider a continuous medium Ω, as shown in Fig. 1,
where the shape of the interface boundary γ is controlled by
a design variable τ . A velocity field V which associates τ to
the movement of material points is applied to each material
point of Ω with coordinates x. Thus, a perturbed point xτ for
a given geometry perturbation τ is obtained with:

xτ = x + τV(x, τ). (4)

Using differential forms proper to differential geometry [7] and
(4), a material derivative can be obtained for the 1-form state
variable A:

dA/dτ := Ȧ + grad V ·A, (5)

where ˙(.) ≡ (∂τ + V · grad ) (.).

B. Sensitivity Formula Derivation

The aim is to find the derivative dF/ dτ of a function
F =

∫
ΩF

f(A(τ), τ) dΩ or F = f(A(τ), τ) that represents
any performance measure or constraint in the optimization
problem. Two different approaches can be used to compute
dF/ dτ :



• The direct differentiation approach evaluates the depen-
dence of A with respect to τ using the derivative of the
weak formulation:

a
(
dA/ dτ , Ā

)
= l′

(
Ā
)
− a′

(
A, Ā

)
, ∀Ā ∈ ZA. (6)

• The adjoint method uses a Lagrange multiplier λ as
the solution of the system in (7), in order to avoid
the evaluation of the response sensitivity dA/dτ . The
solution is then used to retrieve dF/ dτ :

a
(
λ, λ̄

)
= (∂AF ) · λ̄, ∀λ̄ ∈ Zλ. (7)

The complete developments will be given in the full paper,
highlighting two alternatives for the calculation of the terms,
either using boundary integrals or using volume integration
terms.

C. Velocity Field Computation
The velocity field is defined uniquely on the boundary ∂Ω

(V∂Ω), and it is arbitrary in the interior of the domain. At
the discrete level, we determine V∂Ω geometrically: the mesh
nodes are relocalized on the surface after a finite perturbation
of the boundaries, based on the underlying parameterization of
the geometrical (CAD) model. The velocity is then extended
to the whole domain by considering two methods:
• The boundary layer extension method: from a known

velocity field on the boundary nodes, the values are
extended to the interior nodes located on the adjacent layer
by using a linear interpolation (see Fig. 2). This method is
very efficient, is very natural in a finite element context.

• The method of Laplacian smoothing (LS) [8] retrieves the
inner nodes velocity field by solving a laplacian problem
with boundary velocity field as a Dirichlet boundary
condition. The result is illustrated in Fig.3.
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Fig. 2. Single layer velocity field.
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Fig. 3. LS velocity field.

IV. APPLICATION EXAMPLE

The sensitivity analysis is validated with a rectangular do-
main subject to homogenous Dirichlet boundary conditions on
Γ. A current density is imposed in a disk and a design function
corresponding to the magnetic energy is defined on another
disk. The difference of reluctivities between the rectangular
regions is set to 1000. The velocity field is propagated to
one layer. The corresponding magnetic potential vector and the
adjoint variable are represented on Fig. 4 and Fig. 5, respec-
tively. When the mesh is refined, the sensitivity computed using
both the boundary integral and the volume integral converge
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Fig. 4. z-component of the mag-
netic potential vector
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Fig. 5. z-component of the adjoint
variable

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

10
−2.82

10
−2.81

10
−2.8

10
−2.79

10
−2.78

10
−2.77

Mesh Element Size

∆ν:1000 − Derivative Value

 

 

Global Finite Difference
Line Integral method
Volume integral method

Fig. 6. Derivative vs mesh charac-
teristic length
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Fig. 7. Relative error of derivative
vs mesh characteristic length

to the global finite difference solution (see Fig. 6). However,
the relative error related to the line integration method is larger
(see Fig. 7), suggesting that volume integration method should
be preferred.
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